WELD-LAG®
the IMPROVED pulley lagging

FOR:
MINING
CRUSHED STONE
SAND & GRAVEL
CEMENT
AGRICULTURE
FOOD PROCESSING
COAL MINING
POWER GENERATION
FEED & GRAIN
GENERAL INDUSTRY

flexible pulley lagging . . . One pad fits all pulley sizes!

SRC RUBBER PRODUCTS
LOWED MAINTENANCE COSTS

Weld-Lag® represents a breakthrough pulley lagging design that combines several outstanding features into an affordable and effective lagging for all types of conveyor and elevator pulleys. It compares very favorably with vulcanized lagging both in service life and cost, without the installation problems associated with that type of lagging. At the same time, Weld-Lag® easily outclasses all other types of field installed lagging for economy and ease of installation.

ONE SIZE FITS ALL PULLEYS

“One pad fits all” is just a short way of describing the tremendous advance in pulley lagging design that Weld-Lag® represents. This improvement totally eliminates the costs and inefficiencies involved with factory forming of lagging pads. At the same time, it sharply reduces inventory costs, simplifies ordering and eliminates the possibility of mistakenly installing the wrong size pad. Weld-Lag® 200 is a narrower pad that is designed primarily for use on all pulley diameters under 12", down to a minimum of 6". It may, however, be used on any larger diameter, where the only consideration is the number of pad rows needed. For diameters of 12" or larger, Weld-Lag® 300 is normally recommended. Maintenance costs are substantially reduced with Weld-Lag® pulley lagging.

QUALITY PRODUCT COMPONENTS

A combination of high quality materials is used in manufacturing every Weld-Lag® pad. Each elastomer compound is formulated to achieve maximum life under a variety of service conditions. The pad elastomer is permanently bonded to the metal components during the molding process, where temperature and pressure transform the individual parts into a homogeneous product. Weld-Lag® extends lagging life through the use of quality materials and manufacturing processes.

REDUCED CORROSION PROBLEMS

The special Weld-Lag® pad design limits the amount of exposed metal and metal-to-metal contact found in other lagging products, to effectively reduce the corrosion of pad components as well as corrosion where the pad and pulley surface meet. An integral, molded elastomer layer has been incorporated into the bottom of each Weld-Lag® pad to enclose the flexible metal insert, sealing it from the effects of the operating environment. In addition, this elastomer layer insulates the lagging pad from the pulley surface. Weld-Lag® has been designed to substantially reduce metal corrosion for increased lagging and pulley life.

DECREASED INSTALLATION TIME

Weld-Lag® pads are welded directly to the pulley surface, totally eliminating the time and expense involved with storing, handling and installing separate metal components. This new design also completely eliminates the danger of lagging pads sliding out during use where they can cause severe damage. The wider pad width in Weld-Lag™ 300 means fewer pad rows for faster installation and reduced welding effort. Weld-Lag® pads can normally be installed in the field, without the time and expense of removing the belt or pulleys from the system. Where welding is not desirable, Weld-Lag® pads may be bolted to the pulley. Save on installation time by using Weld-Lag® pulley lagging.

MAXIMIZED BELT & LAGGING LIFE

With no separate metal components to interfere with belt and lagging life, Weld-Lag® maximizes the wear life available from the elastomer thickness molded into each pad. The full pad thickness is available for wear and, when the pad is eventually worn out, there are no sharp edges left exposed to damage the belt. For longest belt and lagging life, specify Weld-Lag®.

IMPROVED CONVEYOR AND ELEVATOR PERFORMANCE

EXCELLENT TRACTION

Weld-Lag® traction pads combine high quality rubber compounding with an exclusive pad surface design to provide superior gripping ability and maximum traction under all operating conditions. In many cases, belt tension requirements can be reduced by installing Weld-Lag®, resulting in reduced belt purchase and repair costs and increased splice life. Weld-Lag® reduces belt slippage problems for superior performance.

SELF-CLEANING

The possibility of material buildup on drive pulleys is greatly reduced through the self-cleaning action of Weld-Lag®. The tapered grooves in the pad surface act as channels for moisture and foreign material, to help resist material accumulation and the system operating problems that result.

HOW TO SPECIFY WELD-LAG®‡

<table>
<thead>
<tr>
<th>TRACTION PADS (DRIVE PULLEY)</th>
<th>SMOOTH PADS (NON-DRIVE PULLEY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL PADS</td>
<td>FULL PADS</td>
</tr>
<tr>
<td>Full length traction pads (drive) are series designated as Weld-Lag® 200 (5 7/16" wide) and Weld-Lag® 300 (6 7/8" wide). Compounds other than the standard industrial grade are identified by changing one or both of the last two digits in the product name. For example, Weld-Lag® 202 designates a nitrile elastomer. The subscript /9 after the product name indicates stainless steel weld strips.</td>
<td>Full length smooth pads (non-drive) are series designated as Weld-Lag® 660 (5 7/16" wide) and Weld-Lag® 760 (6 7/8" wide). Changing the last digit in the product name specifies a compound other than the standard industrial grade. For example, Weld-Lag® 763 signifies EPDM. Adding the subscript /9 identifies stainless steel weld strips.</td>
</tr>
<tr>
<td>CUT SETS</td>
<td>CUT SETS</td>
</tr>
<tr>
<td>A cut set, ready to install, of any Weld-Lag® product is identified by the subscript C after the complete pad number. The pulley diameter and face width must also be given when specifying a cut set.</td>
<td>A cut set, ready to install, of any Weld-Lag® product is identified by the subscript C after the complete pad number. The pulley diameter and face width must also be given when specifying a cut set.</td>
</tr>
</tbody>
</table>

‡Refer to List Price Page 6.51 for more information
When ordering individual pads, select the number of Weld-Lag® pads needed for the more common pulley sizes from Tables A or B below, or calculate the number of pads required using Formula A or B. For cut sets, simply specify the pulley diameter and face width involved.

FORMULA A: For Pulley Diameters under 12" (Table A)
1. Multiply the pulley diameter x 3.1416 = circumference.
2. Divide circumference by 5.44 = approx. number of pad rows. Round down to the next smallest whole number = exact number of pad rows.
3. Multiply by the pulley face width and divide by 72". Round up to the next full pad length.

FORMULA B: For Pulley Diameters 12" or More (Table B)
1. Multiply the pulley diameter x 3.1416 = circumference.
2. Divide circumference by 7.75 = approx. number of pad rows. Round up to the next largest whole number = exact number of pad rows.
3. Multiply by the pulley face width and divide by 120". Round up to the next 1/2 pad length.

These formulas are based on using all short lengths of pad produced from cutting by fitting them end-to-end in the pad rows. The figures in Tables A and B are based on using those same procedures.

Pad spacing for selected pulley diameters

This table may be used to select pad spacing for some of the more common pulley diameters. Use the formulas under the table to calculate pad spacing for any pulley diameter.

<table>
<thead>
<tr>
<th>Pulley Diameter</th>
<th>Approximate Pad Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>6"</td>
<td>13/16"</td>
</tr>
<tr>
<td>8"</td>
<td>13/16"</td>
</tr>
<tr>
<td>10"</td>
<td>13/16"</td>
</tr>
<tr>
<td>12"</td>
<td>3/4"</td>
</tr>
<tr>
<td>14"</td>
<td>9/16"</td>
</tr>
<tr>
<td>16"</td>
<td>7/16"</td>
</tr>
<tr>
<td>18"</td>
<td>5/16"</td>
</tr>
<tr>
<td>20"</td>
<td>7/32"</td>
</tr>
<tr>
<td>24"</td>
<td>3/4"</td>
</tr>
</tbody>
</table>

For Diameters Under 12":
1. Multiply the pulley diameter x 3.1416 = circumference.
2. Divide circumference by 5.44 = approx. number of pad rows. Round down to the next smaller whole number = exact number of pad rows.
3. Multiply 5.44 by exact number of pad rows = pad area.
4. Subtract pad area from circumference and divide by exact number of pad rows = approx. spacing between pads.

For Diameters 12" or More:
1. Multiply pulley dia. x 3.1416 = circumference.
2. Divide circumference by 7.75 = approx. number of pad rows. Round up to the next largest whole number = exact number of pad rows.
3. Multiply 7.75 by exact number of pad rows = pad area.
4. Subtract pad area from circumference and divide by exact number of pad rows = approx. spacing between pads.
FOR SPECIAL SERVICE CONDITIONS

COMPOUNDS

The quality of the elastomer compound used in a lagging product is important in achieving maximum service life. For most normal industrial applications, the standard Weld-Lag® industrial compound will provide excellent service. Other more common operating conditions involving oil, heat, static conductivity, etc. may require one of the other compounds shown on price list 6.51. Note that 60 durometer is standard for traction pads and 40 durometer is standard for the smooth pads normally used on non-drive pulleys. Occasionally, more unusual operation conditions may require that a compound be designed for non-standard color, durometer, chemical resistance, etc. In these cases, SRC will formulate a compound specifically for those service conditions.

STAINLESS STEEL PAD COMPONENTS

Some conveying and elevating applications require stainless steel pad components, instead of mild steel, so as to resist corrosion. Weld-Lag® products are readily available with Type 304 stainless steel weld strips. For very unusual applications, the flexible metal insert may also be made from stainless steel. If the situation warrants, other grades of stainless steel can be specified for any of the Weld-Lag® metal components.

PAD THICKNESS

The thickness of elastomer on a lagging pad that is available for wear is an important operating consideration, since it directly affects the length of service that will be realized before replacement is necessary. A ¾” pad thickness is standard for Weld-Lag® 200, while ½” has been selected as the standard thickness for Weld-Lag® 300. It is important to note that on Weld-Lag® pads, these dimensions specifically describe the amount of useable elastomer available for wear, unlike some other products where metal components reduce the effective pad thickness. All Weld-Lag® products can be ordered in non-standard pad thicknesses ranging from 5/16” through ¾”.

HOW TO USE WELD-LAG® TO CROWN A PULLEY

Using the lagging to provide a crown on pulleys has become common practice and is an economical way to reduce spare pulley inventories. Weld-Lag® products may easily be used to crown a flat-face pulley. They can also be used to supplement an existing center crown in a pulley to further increase the belt tracking achieved. As the drawing below indicates, this procedure is accomplished by installing lagging pads that are ⅛” to ¼” thinner at the pulley edges while retaining a thicker pad at the center. Usually, a pad length approximating 20% of the pulley face width will suffice for the thinner pad length at each edge, up to a maximum of about 12”. On very wide pulleys or rolls, it may be advisable to increase this length somewhat to obtain proper tracking.

ALSO AVAILABLE FROM SRC:

- Molded Products
- Hand Built Products
- Extruded Products
- Other Patented Rubber Products

DISTRIBUTED BY

STOCKTON RUBBER MFG. CO., INC.
5023 N. FLOOD RD.
P.O. BOX 639
LINDEN, CA 95236
(209) 887 – 1172 / FAX (209) 887 – 0082
srclinden@stocktonrubber.com